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Abstract

Two resultsconcerning photon pairs,one previouslyreported and one new, axe summa-

rized. It was previouslyshown that ifthe two photons are prepaxed in a quantum state

formed from [A) and [A')for photon I and IB) and [B')forphoton 2,then both one- and

two-paxticleinterferometrycan be studied. Ifviisthe visibilityof one-photon interference

fringes(/= I,2) and v12isthe visibilityoftwo-photon fringes(a concept which we explicitly

define), then

v?+ < 1.
The second result concerns the distinguishability of the paths of photon 2, using the known

2-photon state. A proposed measure E for path distinguishability is based upon finding

an optimum strategy for betting on the outcome of a path measurement. Mandel has also

proposed a measure of distinguishability PD, defined in terms of the density operator p of

photon 2. We show that E is greater than or equal to Po and that v2 = (1 - E2) 112.

1 Introduction.

The idea of an entangled quantum state of a composite system - i.e., a state not factorizable

into a product of one-particle states - was discovered by SchrSdinger in 1926, and has been'

intensively studied as a result of analyses by Einstein-Podolsky-Rosen and Bell. A very convenient

method for preparing entangled photon pairs by parametric down-conversion in laser-pumped

nonlinear crystals was discovered by Burnham and Weinberg in 1970. Their discovery permitted

the development of two-photon interferometry by Mandel and his school, Alley and Shih, Franson,

Rarity and Tapster, Chiao and his school, and others)

For subsequent discussion, it will be useful to refer to a schematic two-photon apparatus (Fig.

1), in which a pair of photons emerges from a source S, one of which propagates in beams A and/or
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A', and the other in beams B and/or B', where the locution "and/or" is a brief way of referring to

quantum mechanical superposition. For the work on path distinguishability that we shall report,

this partial description of Fig. 1 provides the essence. For the work on the complementarity of

one-photon and two-photon interference, some further elements are indispensable. There is an

ideal symmetric beam splitter H1 upon which each of the beams A and A' impinge, from which

emerge beams U2 and L_. We can speak equivalently of a photon "emerging" in beams U1, L1,

U2, L2 or of its "detection by an ideal photo-detector" in the respective beams. Finally, there are

variable phase shifters ¢1 and ¢_ inserted in beams A and B.

FIG.1. Schematic two-particle four-beam inteferometer.

2 Complementarity.

It was noticed in the past, for instance by Horne and Zeilinger, 2 that when the photon pair is

prepared in the entangled state [qJ),

[IA>IB>+ EA'>IB'>]. (1)

then probabilities of single detections in the various emerging beams are independent of phase

shifts ¢1 and ez. specifically.

P(U1) = P(L1) = P(_;2) = P(L_) = -1 . (2)
2

whereas the probabilities of joint detection depend on o_ and oz. specifically,

1[1 - cos(qh + ¢2)] (3a)
P(U1U2) = P(LIL2) = "_

111 + cos(01 + ¢2)] (3b)
P(U1L2) = P(LIU2) = _

Since the probabilities in Eqs.(3a. b) vary from a minimum of zero to a non-zero maximum value,

while those of Eq.(2) do not vary at all. it is reasonable to extend standard optical terminology

and say that the visibility of one-photon "'fringes" is zero and the visibility of two-photon fringes
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is unity, where "fringe" is a generic way of referring to the dependence of detection probabilities

upon variable phase shifts. When the quantum state of the two photons has the product form

then

1 1

10) = -_ [IA)+ IA')]_ [[B)+ IB')], (4)

1

P(Ui) = 2(1- sin¢i), i= 1,2, (ha)

P(LI) = 1(1 +sin¢,), i= 1,2, (5b)

and the probabilities of joint detection are the products of respective single detections:

1

P(UIU2) = P(U,)P(U2) = 4(1 - sin¢l)(1 - sin¢2), etc. (6)

It is reasonable to say in this case that the visibility of one-photon fringes is unity, but the visibility

of two-photon fringes is zero (the latter statement in spite of the fact that P(U1U2) does vary with

¢1 and ¢2, because of the consideration that this variation is not a genuine two-photon effect but

is derived from the one-photon variation).

The two extreme cases of Ikg) and I¢) suggest that there is a complementarity of one-photon and

two-photon interference visibility. Jaeger, Horne, and Shimony 3 raised the question of a general

complementarity relation, holding for any two-photon state expressible in terms of IA), IA'), ]B),

[B'). A necessary condition for investigating this question was to define explicitly the "one-photon

visibility" vi (i = 1,2) and the "two-photon visibility" v12. The former is straightforward, simply

adapting the standard optical concept introduced by Rayleigh. We state it here only for the beams

U1 and U2, but parallels hold for L1 and L_

For v12 Jaeger et al. suggested

[P(Ui)l,,,.x- [P(Ui)lm,.

v, = [P(U;)Im,, + [P(U_)lm,, " (7)

[P(u1u )]mox-
v,2 - + (s)

The "corrected" joint probability P(UIU2) is defined as

1
P(U_U2) = P(U_U2) - P(U_)P(U2) + (9)

where the second term on the right hand side removes the variability that is derived from the

single probabilities P(U1), P(U2) and the third term is a correction against excessive subtraction

in order to agree with intuition in the extreme cases of IqJ/and I_).
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In order to exhibit the desired complementarity relation, it is essential to calculate vi and v12

in the most general two-photon state that can be prepared with [A), [A') as basis states for photon

1 and IB), [B') as basis states for photon 2, namely,

[O) - cosa[cos_3[A)[B) + e'J'sin_3[A')[B')]

+ sina[e'%os'ylA)[B') + e'"sin_[A')lB)]. (10)

Note that only three phase angles )_,/_, v are used, because an overall multiplication by a phase

factor does not change the quantum state, and this fact can be used to choose the coefficient of

IA)IB) to be real. In Ref. 3 it was fallaciously argued that a basis change of

]A) = e'P[A) , IA') = e'°'[ft') , (11)

IB) = el'l/}), IB') - d"'lB'),

can be used to express 10) in terms of [A), IA'), IB), IB') with real coefficients. But Prof. Sheldon

Goldstein pointed out to us (private communication) that in general only two of the three phase

angles in Eq.(10) can be eliminated by a basis change, and therefore the greatest simplification

that can be achieved in full generality retains one explicit phase angle, for instance,

[O) = cosa[cos_31A)lB) + sin_3[A')lB')]

+ sina[cos'ylA)lB') + e'¢sin'_[A')[B)]. (12)

So far, we have not demonstrated a complementarity relation for the general case of Eq.(12). We

therefore report the result in the restricted case of r = 0, which we have investigated. As stated

in Ref. 3, Eqs.(29-32), we obtain

1 2

v_ = _sin 2a[1 + sin213 sin27 + (-1)icos2_ cos27], (13)

whence

or equivalently,

v_2 = cos4a sin22j3 - 2sin2a cos2a sin2_ sin27 + sin4ct sin227 , (14)

v_ + v_2 <_ 1, (1ha)

1

0 < vivx2 < _ • (15b)

Inequalities (1ha,b) are our expressions of the complementarity of one-photon and two-photon

visibilities. Although we have derived them only for the special case of r = 0, we are confident

that they hold for any r and hence for the most general 119). Work is in progress on this important

question.
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3 Path Distinguishability.

We return now to Fig. 1 and ask a new question. Suppose that we are allowed to make any

observation on photon 1, which is the left-going photon that propagates in A and/or A*; what is

the best procedure for predicting which detector will be triggered by photon 2, if ideal detectors

are inserted in beams B and B'? This question is related to a question recently raised by Mandel 4

concerning the distinguishability of the path of a photon that propagates in beams B and/or B'.

There is, however, an important difference between Mandel's question and ours. He assumes only

that one knows the density operator p characterizing an ensemble of photons in the beams B

and/or B', and he asks for a measure of distinguishability expressed in terms of p. By contrast, we

ask for a measure of distinguishability based upon the quantum state IO) of the pair of photons

1 and 2, together with the outcome of an arbitrary measurement upon photon 1. It is possible to

compare our result with Mandel's, because when ]19) is given a density operator for photon 2 can be

calculated 5 by tracing out the appropriate variables of photon 1. But, of course, if only p is given,

there are many possible preparations of an ensemble of photons propagating in beams B and/or B'

that would yield the same p. In other words, the preparation of the ensemble provides additional

information that is not included in p. Consequently, we anticipate a discrepancy between Mandel's

measure of path distinguishability and ours.

As a preliminary to our proposed measure of path distinguishability we suppose that an ob-

servable (9 is measured on photon 1. Since the space of states that we have allowed for photon 1

is two-dimensional, there is no loss of generality if we restrict the observable (9 to the form

O = I¢x)(¢,1- 1¢2>(¢21, (16)

where [¢1) and [¢2) are orthonormal kets in the space spanned by [A) and [A'). (We are grateful

to Prof. Lev Vaidman for suggesting that we consider any O, rather than just [A)(A[- [A')(A'[

as in our original preprint.) The eigenvalues of O are +1 and -1. Now formulate a strategy for

betting on whether the detector in team B or in beam B' is triggered, letting the strategy depend

upon the quantum state [0) of the photon pair and the outcome +1 or -1 of measuring O. If in

a single case the correct detector is predicted, the observer wins one unit of utility; if the wrong

detector is predicted, the observer loses one unit of utility. Once the strategy is specified, it is

straightforward to calculate from [0) the average gain per bet. Let Eo be the largest average gain

thus calculated as the strateg5' is varied but O is fixed. Finally, our measure of distinguishability
of paths, which we shall label E, is defined as

E = max Eo (over the set of allowed observables). (17)

E is thus the quantuna mechanical estimate of the gain per bet when the optimum allowable

strategy is followed, the bets being made concerning paths B and B'.

To calculate Eo we first rewrite IO), assumed to be normalized, as

IO) = lxl)IB) + 1\2)IB'), (18)

where, as before, IB) and IB') are orthonormal, but I\1) and I\'2) need not be; however,

(\1IX1) + (\_1\2) = 1 . (19)
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With no loss of generality we can assume that

(x, lx,) >- (×_lx,) , (20)

which can be achieved, if necessary, by interchanging the labels B and B' of the two paths of

photon 2. Then we can write

IX2) = AIX1) + IX3), (213)

where

x= (x,lx,) (21b)
(×,1×,)'

I,_I_<1, (21c)

and

(x, lx_)= o. (21d)

If we define

Ni = (x,lx,), i- 1,3, (22a)

then the IXi), defined by

Ix,) i= 1,3, (22b)
I_,)- v_'

are orthonormal. Furthermore,

N,(1 + I_1_)+ N3= 1 . (23)

Any basis I_1), l_2) in the space of allowable states of photon 1 can be expressed as

I_,)= #12,)+ vI2,), (243)

14,=)= v'lx1) - #'1_),
where

I_12+ Ivl_ = 1

This basis defines the observable O of Eq.(16). It will also be useful to write

(24b)

(24c)

B = IB)(BI- IB')(B'I, (25)

an observable in the allowable space of states of photon 2; clearly B is observed to have values +1

and -1 according as photon 2 is detected in path B or B'.

If O is the observable chosen to be measured, then there are four pure strategies for bets on

the path of photon 2:

(1) If O = +1, predict B = +1; if O = -1, predict B = -1.

(2) If O = +1, predict B = -1; if O = -1, predict B = +1.

(3) Predict B = +1 regardless of the value of O.

(4) Predict B = -1 regardless of the value of O.
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In addition to these pure strategies there are mixed strategies, consisting of following (1), (2),

(3), (4) with arbitrary probabilities summing to unity. But since the game is not being played

against a rational opponent, the average gain in a mixed strategy cannot exceed the maximum of
• (i) " 6 "

the average gain E o of the pure strategms, z = 1,2,3,4. These are calculated as follows:

E(_)= P(O = 1 and B = 1) + P(O = -1 and B = -1)

-P(O= I and B= -l)- P(O= -I and B= l)

= I(Ol4,,)IB)I2+ I(Ol¢=)IB')I=-I(Ol,/,,)IB')I =-I(OIC=)IB)I2

= ,S'(l_,l=- I,_1=)- TlulI,4 cos(e_,+ O,.- e.), (26)

where

S = N, (] - lAP)+ N3, (27a)

T = 4N_nN_/31,Xl, (27b)

= I_le'O.,_,= I_,1¢°,,, ,i = I,.,1_'o_; (27c)

E(_ )= -E(_) ; (28)

E(_ ) = P(13 = +1)- P(B = -1) = (x,lx,) - (x=lx=)

= N,(I -I,_1=)- N3= S- 2N_; (29)

E(_)= P(B = -1)- P(B = +1)= -E(_ ) . (30)

Note that E(_ ) and E(_ ) are independent of O. Then

Eo = max{IS(llt] 2- Ivl 2) - T]/_[]v I cos(Ox + 0,,-0_,)1 , IS- 2N3[}. (31)

In view of Eqs.(17) and (31) one finds the measure E of path distinguishability by investigating

Eo as # and v are varied, subject to Eq.(24c). We first note that for any ]O) there is an O such
that

IEg)I > IE_)I, (32)

so that the second option in Eq.(31) can be neglected when we maximize over all possible O. To

prove these statements, it suffices in Eqs.(24a,b) to let # = 1 and v = 0, determining an O' such

that Eqs.(26), (27), (28) yield

IE(_,)l= IN,(1 -I_l =)+ N31, (33)
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and
IE(_),I= IN,(1 -IAI2) - N31. (34)

Since N, and N3 are non-negative, and (1 -IAI _) is non-negative by Eq.(21c), we obtain

IE_21> IE_2I, (35)

the rhs being the same as [E_)[ for all O. E is therefore obtained by maximizing the first option

of Eq.(31) for allowable/_ and u, and the result is

1
E

= _(4S 2 _-T2)I/2.

By Eqs. (27a), (27b), and (23) m can be rewritten as

E = (1 - 4N_IAI2) */2.

(36)

(37)

We can now make a comparison with Mandel's 4 measure of path distinguishability PD. Mandel

notes that in a two-dimensional Hilbert space, any density operator p can be expressed uniquely

in the form

p = PID PID + PD PD , (38)

where PD is diagonal in the IB>, IB') basis, i.e.

PD= c,,[B)<BI+ c_zlB'><B'I,

(after adaptation to our notation),

tr PID = tr PD = 1 ,

(39)

(40)

and

P,D > 0, I'D > 0. (41)

Since PDis a diagonal density operatorin the specifiedbasis, one can prepare an ensemblewith
a definite proportion cxxin the state IB) and a definite proportion c22in the state IB') such that
this ensemble is represented by PP. It is this considerationthat leads Mandel to identify PD as
the degree of path distinguishability when p is given. Mandel also shows that

Ip,2l (42)
PD = I (piip22),/2 ,

where plj is the ij th matrix element of p in the IB), IB') basis.
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Now let us consider the ]O) of Eq.(18), which we can rewrite as

1/_ _ ,I0) = N_/_I£1)IB) + A g_/_lYa)lB') + g_ Ix_)lB ) (43)

By the standard procedure for writing the density matrix of particle 2 of a two-particle system, s

we obtain (with the help of Eq.(23)),

pll =N1 ,

P12 = N1A , P21 = N1A" , (44)

P22 ll N_I_I_+ N_ : 1 - N1 •

Hence, Eq.(37) can be rewritten as

E = (1 - 41p,212)v_ , (45)

which can be shown as follows to be greater than or equal to Po of Eq.(42).

Proof : First note that if x and y are real numbers in the interval [0, 1] which sum to unity,
then

1

xy _< _, (46)

from which it follows that
1

(47)

Furthermore, since, by Eq.(23)

N? I,Xl_ _ N_(1 - N_ - N3) < N_(1 - N_),

we have

From Eqs.(47) and (48) we obtain

1

IP,:l = NxlAI _ _, (48)

1 -4lp_212 _> 1 - 21p121 _> 1
Ipa_l

(plap22)l/2 '
(49)

where the lhs of this inequality is E 2 and the rhs is P_. Since both E and PD are non-negative,
it follows that

E > Pp. (50)

We note that when E is unity, so is PD: that is, perfect distinguishability (in our sense) on

the basis of the two-photon state IO / implies perfect distinguishability (in Mandel's sense) on the

basis of the density operator. There is an intuitive reason for this agreement: E = 1 implies that

there is perfect correlation between the behavior of photon 1 and the entrance of photon 2 into

]B) or ]B'), but perfect correlation requires the orthogonality of IX1) and IX_) in Eq.(18). This

orthogonality, in turn, guarantees that the density operator of photon 2 is diagonal in the IB), IB')
basis.
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If we look at the other extreme, however, we find that PD ----0 does not imply that E -- 0.

Again there is an intuitive reason. When PD = O, then p is a pure case, derived from a quantum

state of the form

I¢) = clB) + c'IB') , (51)

so that

pll = Icl_ ,

P12 = cd*, p21 = c*c'

p2_= Idl_ ,

(52)

Then
[p12[

E - PD -" --4[P12[ 2 +
(pnp22)l/2 '

=-41c1_1_'12+ 1, (53)

and this vanishes if and only if Ic[2 = [d[ 2 = _. But when the amplitudes of [B / and IB'/in the

pure state [¢) are equal, there is no strategy for betting on the path that will yield a net gain on

the average. On the other hand, when [c[2 and [c'[ 2 are unequal, the strategy of betting on the

path associated with the larger coefficient will yield a net gain on the average. The advantage

of our E over PD is the ability of the former to take advantage of inequalities in the amplitudes

associated with the two paths.

Mandel also relates path distinguishability to the visibility v_ of the interference pattern, where

v2 = 2lp,2[. (54)

He obtains the inequality

v2 < RID = 1 -- PD , (55)

with equality holding only when pn = p22. We obtain from the expressions for E and v2 in

Eqs.(45) and (54) the equation

v2 = (1 - E2) 1/2 , (56)

which holds for any preparation of an ensemble of photons in states [B / and [B') derived from

a two-photon state of the form IO). Hence, for the preparation of photon 2 that we have been

studying, the visibility v2 is a natural measure of path indistinguishibility.
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